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ABSTRACT

A nontechnical introduction to selected recent

models of plant development and growth is pre-

sented. Problems of creating predictive, quantitative

models for (1) regulatory networks and (2) the use of

space by developing tissues are outlined. These

problems can be addressed using suitable mathe-

matical frameworks to represent the substantial

variety of relevant biological mechanisms, including

gene regulation, protein modification, and cell–cell

signaling by ligand/receptor pairs and by polarized

auxin transport; also relevant are cell growth and

division, the changing topology of signaling rela-

tionships between cells, and mechanical interactions

between cells. Modeling frameworks are briefly de-

scribed for gene regulation networks, including sig-

naling; for more general biochemical reaction

networks; for mechanical interactions (using a weak

spring model) and signaling mediated by a changing

topology of neighbor relations among growing and

dividing cells; and for approximating such models at

the tissue level using spatially continuous descrip-

tions with changing shape. Finally, a ‘‘dynamical

grammar’’ framework allows naturally for integra-

tive and multiscale models because it can, in princi-

ple, combine any or all of the foregoing mechanisms.

With mathematical and computational tools such as

these, and with the current rapid progress in instru-

mentation and imagery, the future looks bright for

scientifically effective modeling of plant develop-

ment.
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meristem; Gene regulation network; Gene regula-

tion signaling network; Dynamical grammar; Polar-
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INTRODUCTION

The goal of this article is to provide a nontechnical

introduction to some of the ways that plant devel-

opment and growth can be modeled with mathe-

matics using a computer. The selection and

presentation of topics is highly biased by the au-

thor�s own experience, rather than being an attempt

at an objective review. But it provides an internally

cohesive view that favors some approaches over

others for the near future. Thus it may help to

introduce plant biologists to new and relevant ideas.

The structure and diversity of plant morphology

inspires one to mathematical thoughts. The regular
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and symmetric phyllotactic patterns of many flow-

ers and pinecones, for example, inspired one of the

earliest applications of the newly invented general-

purpose stored-program computer to scientific

simulation, in the 1951–54 unfinished work of Alan

Turning (Swinton 2003), which was based on dif-

ferential equations for reactions and diffusion. Since

then, computer science related models have been

applied to phenomenological modeling of plant vi-

sual appearance in computer graphics. One class of

examples is given by L-system grammars (Prus-

inkiewicz and Lindenmeyer 1990). But only re-

cently has detailed knowledge of the actual relevant

molecules, such as the growth hormone auxin and

its regulatory interactions, been brought from

molecular biology into problems of predictive,

computable modeling of plant development. Recent

examples include the phyllotaxis models of Jönsson

and others (2006), Barbier de Reuille and others

(2006), and Smith and others (2006).

REGULATORY NETWORK MODELS

With great improvements in biological instrumen-

tation, the known size and complexity of regulatory

networks has increased to the point where it is often

essential for understanding to build computational

models.

Many ideas from mathematics could be applied to

modeling regulatory networks, but we will start with

those capable of reflecting molecular realities that

underlie macroscopic biology. Molecules regulate

one another�s existence and state in biochemical

networks. For example, spatial and temporal gene

expression domains are key mechanisms for mor-

phogenesis. They are frequently set up by networks

of transcriptional regulation, augmented by com-

munication between cells. In these networks, one

gene can enhance or repress another in a feedfor-

ward or feedback manner within and between cells,

resulting in a causal dynamical system that creates a

spatiotemporal pattern of expression domains. Such

networks may be only partially known, so it is

advantageous to consider mathematical models of

dynamical networks that can be ‘‘trained’’ in the

sense of machine learning algorithms—that is, they

can be fit to some data by parameter-optimization

and used to predict other data.

A very early example of a trainable, dynamical

network used to model transcriptional regulation

was developed for fruit fly embryo (Mjolsness and

others 1991; Reinitz and others 1995). It explained

the observed expression patterns of the ‘‘gap genes’’

in specifying position along the anterior–posterior

axis in the syncytial blastoderm, a stage of the em-

bryo comprising one large cell with many nuclei that

exchange transcription factors by diffusion rather

than via cell–cell signaling. The model, derived from

statistical mechanics, incorporated a continuous-

time, real-valued artificial neural network (ANN)

applied as a model of a gene regulatory network

(GRN) (thus, an ANN-GRN). It consists of a coupled

set of ordinary differential equations representing

the dynamics of transcription factor levels, assuming

there is a partially or completely unknown matrix of

numerical interaction strengths (positive or negative

for enhancement or repression, respectively) be-

tween genes within each nucleus. A substantially

different framework based on Boolean networks has

been applied to model the GRN governing cell fate

during Arabidopsis flower development (Espinosa-

Soto and others 2004).

In the Drosophila embryo example, additional fea-

tures beyond the regulatory network itself were

essential. Different nuclei are connected by diffusion,

and they undergo DNA replication on a standard

schedule. The replication of nuclei raises a qualita-

tively new situation in which biological objects such

as nuclei change their number and interconnection

patterns at necessary moments in time but, between

such times, they evolve continuously according to

differential equations. A general framework for for-

malizing such situations was introduced (Mjolsness

and others 1991; Prusinkiewicz and others 1993;

Mjolsness 2006): a ‘‘dynamical grammar’’ whose

constitutive rules eachmodel a biological process that

takes place either continuously or discretely in

time, and which together add up to determine the

dynamics of amodel system.Of course, this capability

will be important in some form for almost any

developmental model that treats cells as distinct

objects.

Later, the ANN-GRN model was augmented to

allow for cell–cell signaling in place of diffusion (the

gene regulation and signaling network, GRSN

[Marnellos and Mjolsness 1998]). The same kind of

model was subsequently used to begin modeling

dynamically stable gene expression domains in Ara-

bidopsis shoot apical meristem (SAM) (Mjolsness and

others 1999). In these early models, space was rep-

resented by a spatial grid that was either fixed (for

example, hexagonal in two dimensions) or allowed

cell division only according to a predetermined

schedule. Thus geometry and topology (the connec-

tivity of cells) were not true interacting players in the

dynamical system model but were exogenous to it.

All such regulatory network models can be clas-

sified according to how they translate different

biological mechanisms (such as transcriptional reg-
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ulation, receptor-mediated intercellular signaling,

post-translational protein modifications, and so on)

into mathematical models. What is needed to begin

this translation of biology into mathematical models

is an abstract representation of the types of infor-

mation-bearing molecules and other biological

objects and the types of biological processes that are

permitted to operate on particular object types,

together with a translation for each object and

process type. This can be represented as a small

graph with nodes and links that encompasses and

generalizes the central dogma (gene fi mRNA fi
protein, where the first arrow represents the process

of transcription and the second arrow represents the

process of translation). We may refer to such an

object type/process type network for cells as a cen-

tral dogma-like network (CDLN), to allow for

domain-specific dogmas whether central or not. The

objects may be thought of as nouns and the pro-

cesses as verbs, with suitable noun/verb relation-

ships represented as links. In computer science,

such a listing of the fundamental types of objects

and processes and their relationships is often called

an ‘‘ontology.’’

In addition to the CDLN, there is also a problem-

specific regulatory network of specific molecules,

objects, and regulatory interactions that agree with

the types and type constraints set forth in the CDLN.

This regulatory network represents a biological

hypothesis whose consequences can sometimes be

best drawn out by modeling. Many regulatory net-

works can be governed by the same CDLN. The

primary inputs to formulating the regulatory net-

work are biological knowledge, data, and expertise

in a particular system.

The Cellerator (Shapiro and others 2003) and

Sigmoid (Cheng and others 2005) software envi-

ronments for modeling, among many others, are

organized around such a process of translation from

biological regulatory networks to mathematical

dynamical models.

Major choices must be made in translating a

regulatory network and its CDLN to a dynamical

model. These choices include, for each molecular

species, whether it is to be represented as a real-

valued (continuous) concentration or as an integer

number of molecules; whether each biological

process is to be modeled as stochastic or (much

more efficiently simulated if less accurate) deter-

ministic in its dynamics; and whether time and

space are each modeled as continuous, discrete, or

both continuous and discrete. In the latter case

there must be some kind of connection between

the two representations (as for example in the

dynamical grammar integration of continuous and

discrete time representations). These choices are

not arbitrary but rather can be fit into a hierarchy

of approximations, with very detailed but imprac-

tical models near the ‘‘bottom’’ being systemati-

cally related to simpler, more computable, and

more understandable models near the ‘‘top’’ of the

hierarchy. These choices may also depend on the

spatial and temporal scales at which a biological

system is to be modeled, so that future multiscale

models must be able to integrate all these different

types of dynamical systems. The primary inputs

into choosing a translation of a biological system

‘‘picture’’ to a dynamical system are mathematical

and computational expertise.

From this point of view, what shall we make of

the many perfectly good modeling reports that do

not appear to follow the foregoing outline? We can

conclude that such articles do follow the procedure,

either partially or cryptically, despite an alternative

form of presentation, or that they could have been

further improved by doing so.

DEVELOPMENTAL SPACE

In development, regulatory networks within a cell

must be augmented with intercellular communica-

tion and the dynamics of growing, dividing cells that

can change their neighborhood relationships. Thus,

the dynamic use of space must be modeled simul-

taneously with the regulatory networks.

Space in a plant tissue is divided into many cel-

lular compartments whose shape is roughly poly-

hedral in the shoot meristem but may have a great

variety of other morphologies elsewhere—though

not so great as in animals. The geometry, topology,

and dynamics of this compartmentalization pro-

foundly influence the regulatory networks within

each cell and are in turn largely a function of

mechanical forces that can be modeled (Murray

1989; Landau and Lifshitz 1986). Fortunately, plant

development provides a major simplification from

animal development in that the dynamics of the

cellular compartmentalization of space doesn�t
include the evolutionary heritage of motility—cells

push, shear, and pull on one another but do not

actively locomote.

Initially the multicellularity of a developmental

system was attractive for gene regulation network

modeling as a sort of parallel assay of the same gene

network under multiple regulatory input conditions

(Kosman and others 1998), with replication and

tissue growth being just potentially confounding

factors. But it was also clear (Mjolsness and others

1991) that a general purpose developmental mod-
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eling framework would require two-way interaction

between regulatory and mechanical networks, in

which a mechanical network influenced signaling

topology in the regulatory network, which in turn

regulated cell division and cell growth inputs to the

mechanical network (Shapiro and Mjolsness 2001).

As a temporary measure, one may consider pas-

sive models of space in which multiple cells and the

space between them serve as an arena for the dif-

fusion of information-bearing molecules from one

cell or nucleus to another. In the limit of infinitely

many very small cells, we can obtain in this way the

‘‘reaction-diffusion’’ partial differential equation

framework of Turing. Cells engage also in more

active signaling processes that may be modeled in

the GRSN framework. At least in Arabidopsis, polar-

ized transport of signals such as auxin, using intra-

cellular cytosol and membrane compartments, is a

much better model than diffusion for some impor-

tant signaling systems in plants including phyllotaxis

in the shoot apical meristem, one of Turning�s ori-

ginal intended systems for reaction-diffusion mod-

eling. But none of these communication models

directly address the active mechanics of cell move-

ment through space.

What is needed is a network-like model of

developmental space and, in particular, of the

mechanics of cellular compartments. An example of

a ‘‘mechanical network’’ would be a Tinker Toy style

arrangement of linear mechanical elements, called

‘‘struts’’ or ‘‘springs with nonzero resting length,’’

which exert force only along their axes (Figure 1A).

Truss bridges and structures can be modeled to first

approximation with such elements. In our work and

in computer graphics these are known as ‘‘mass-

springmodels.’’ However, connections between cells

may dwindle in relative overlap or break entirely

upon cell division, so that the springs should be

‘‘weak springs’’ that can smoothly break (Figure 1B–

D). All of these relationships can be modeled very

simply by potential energy functions that depend

only on the actual length and the resting length of a

spring or strut (Shapiro and Mjolsness 2001). This

mechanical model has been used in modeling

phyllotaxis (Jönsson and others 2006), where its

flexible topology plays an essential role in allowing

cell growth and division to make room for new pri-

mordia, allowing them to escape inhibition by the

old ones.

Fortunately the weak spring model allows bidi-

rectional coupling of mechanical and regulatory

network models. The regulatory network governs

gene expression, metabolism, the growth of cell

volume, the synthesis structural molecules, and the

cell cycle including mitosis and cell division, which

again affects cell volume. Cell volume and the

amounts of any structural molecules govern the

individual properties (strength and resting length) of

the idealized spring between neighbors. Cell posi-

tions automatically minimize the total mechanical

energy, through fast Aristotelian dynamics with

velocity proportional to force over viscosity. The cell

positions determine their geometry, including the

interface area between any two cells. This interface

area modulates the strength of any intercellular

communication impinging on the regulatory net-

work of each cell from the others; if it is zero, there is

no direct signaling. Thus, the GRN influences the

mechanical network and the mechanical network

influences the regulatory network.

However, it is a considerable oversimplification to

represent all the mechanical forces between two

plant cells by a single spring energy function con-

necting their centers. Relevant subcellular structure

that is omitted this way includes the mechanics of

the nucleus made of stiff DNA, its random motion

through the cytosol, the branching fibrous cyto-

skeletal network, and the sheets consisting of strong

parallel cellulose fibers within the walls (and all

perpendicular to the single idealized spring). The

biological picture is of a complex, heterogeneous

medium made of a great many nonlinear springs at

a molecular rather than cellular scale, with addi-

tional fluid and gel properties.

A more detailed approach to mechanical model-

ing, then, is to use continuum approximations to

elastic, viscoelastic, or plastic media as outlined by

Murray (1989), with homogeneous properties in

each of a set of compartments such as nucleus,

cytosol, and particular cell membranes and walls.

These models can be derived as a limit of infinitely

many very small springs as in a spring network

model. The essential quantities to model are stress

and strain tensors, representing forces per unit area

and relative displacements per unit length, respec-

tively. Teran and others (2003) work out one

example for anisotropic tissue media that roughly

conserves volume for skeletal muscle. With ad-

vances in imagery to constrain the geometries and

material properties (such as stress–strain laws), such

fine-scale modeling will become progressively more

practical.

A standard route to mechanical modeling is to

use the finite-element method (FEM) to discretize

continuous (PDE) elastic material models in 1D, 2D,

and/or 3D. Each finite element is a polygon or

polyhedron representing a region of space occupied

by biological material, and connected to its neigh-

bors. Within each element the relevant functions

are interpolated using low-degree polynomials of
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the spatial variables satisfying continuity conditions

at the boundaries. Where stresses and strains vary

over a fine spatial scale, more finite elements are

used to represent those changes. The goal is usually

to approximate the behavior of a continuum elastic

model using many finite elements with homoge-

neous mechanical properties, nevertheless using as

few finite elements as is compatible with accurate

simulation of the continuous model. In three

dimensions, doing this adaptively as a simulation

proceeds is a mathematical challenge. On the other

hand, real cells and tissues are so heterogeneous

spatially that one may question the goal of

approximating a continuum model, and one may

reinterpret finite elements or small collections

thereof as something closer to heterogeneous bio-

logical structures, such as the nearly polyhedral cells

and cell walls of the SAM.

FUTURE MODELS

Weak spring mechanical network models are very

coarse, having only a few mechanical degrees of

freedom per cell. Conventional FEMmodels are very

fine, approximating a continuum, but they can, as a

result, incorporate more detailed and accurate

physics. Between these two extremes lie other pos-

sibilities for modeling mechanical networks. One is

based on the observation of similarity (Figure 2)

between the irregular polyhedral tilings in SAM

membrane slices and in Voronoi diagrams (Voronoi

1908; Dirichlet 1850). There is a Voronoi ‘‘energy

function’’ in which a defined set of centers (such as

cell nuclei) are used to calculate the distance to each

point in the plane; each point associates with that

center that minimizes its distance. The integral over

the plane of the squared distance to its associated

center is minimized by the Voronoi diagram. In this

way one can make the vertices of a polyhedral tiling

depend exclusively on its polyhedral centers. If one

adds other mechanical energy functions that depend

on the polyhedral tiling, they too become functions

of the polyhedral centers. Very likely a minor gen-

eralization of Voronoi diagrams, which allows for a

cell size parameter, is required to account for indi-

vidual cell growth. (Such a generalization may arise

from taking a slice through a Voronoi diagram of one

higher dimension, or from a weighting on the dis-

tance measure, or both.) The result may be a

mechanical model with the same degrees of freedom

as the weak spring model, but able to represent a

much greater variety of mechanical properties

within each cell and cell wall.

Active, Smart Surfaces and Lively Manifold
Embeddings

In image analysis, ‘‘snakes’’ are active contour

models defined by an energy function that is

minimized when an open or closed mathematical

curve bends so as to follow a smoothed version of

some important image feature such as a noisy

boundary between cells. ‘‘Active surfaces’’ may be

defined similarly, to find boundary or other surfaces

in 3D data. In biology there are many essentially 2D

tissues or layered structures built of 2D tissues. Their

shape is actively controlled, but the information

processing going on to control the shape is, as we

have seen, much more elaborate, described by a

large but structured regulatory network.

It may be useful to consider the following ideal-

ized abstraction of such tissues and layered tissue

structures: each tissue is a 2D continuous surface in

space (having no cell boundaries), with indepen-

dent regulatory networks at each point in the con-

Figure 1. (A) Weak spring model

with internal compression and exter-

nal tension, along with (B) cell divi-

sion in a (C) hexagonal array of cells

with one recent cell division leads to

(D) maintenance of a clonal outer

layer (Mjolsness and others 2004).

Panels (C) and (D) courtesy Henrik

Jönsson, Lund University
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tinuum. However there are multiple forms of

communication between nearby points within the

surface based on diffusion (as in reaction-diffusion

models in an ordinary flat 2D space), receptor-li-

gand mediated intercellular signaling (as in the

GRSN model), polarized transport (which appar-

ently dominates over intercellular diffusion as the

communication mechanism for phyllotaxis in

Arabidopsis shoot meristem), and other coupling

mechanisms that can all be modeled in an idealized

way using spatial derivatives. The result is a net-

work represented as a set of coupled partial differ-

ential equations (PDEs) within each surface.

Next, the foregoing PDEs are to be augmented by

others that represent the continuum limit of a

mechanical network, so that the entire surface can

bend, fold, tear, or reconnect under the influence of

its regulatory network. Neighboring surfaces in a

layered structure can also communicate signals and

stresses between layers, but signal communication

may be less effective than within a surface, in which

case, the model is 2D and layered rather than 3D.

Such models would be mechanically ‘‘active,’’

computationally ‘‘smart,’’ and mathematically

defined ‘‘manifolds’’ or ‘‘manifold embeddings’’

within ordinary 3D space. Their advantages would

be to provide approximate descriptions of develop-

mental processes that involve nontrivial manipula-

tion of shape and form such as is well advanced in

differential geometry; however, one would have to

be careful to reinsert some form of cellular structure

in the verification of computational application of

such models to real systems.

One advantage of such continuum models is that

they allow for analytic models of growth. For

example, the regulation and patterns of growth are

different in stem cell niches within adult organisms

than within rapidly inflating tissues in juvenile

organs (such as leaves) or the embryo. In one

dimension one can create simple, completely solv-

able models of these alternative patterns of growth.

Multiscale Models through Dynamical
Grammars

As suggested above, future multiscale models must

be able to integrate all the major different types of

dynamical systems models, including discrete and

continuous time, discrete and continuous space,

deterministic and stochastic dynamics, and so on, if

only because the very same physical or biological

system can be described with all of these alternative

forms of modeling, at different scales. Future mul-

tiscale models must allow experimentation and

integration of separate processes of these very dif-

ferent types. These goals are achieved by the mod-

eling framework of dynamical grammars (Mjolsness

2006).

In dynamical grammars, each rule represents a

process with input and output objects, much like a

chemical reaction network in which the molecules

bear information such as location and conformation

that affect their reaction rates. Rules can represent

processes that happen discretely in time, such as cell

division and/or changes in attachment of a cell to

neighboring cells, or continuously in time, as

described by differential equations. Every rule and

collection of rules is mapped to a particular math-

ematical object (an operator in a high dimensional

space) that represents the time evolution of a

system due to that process alone. The sum of all

these time evolution operators, over all rules and all

possible parameter values, gives the dynamics of the

whole system. Fortunately, from this framework it

is possible to deduce efficient discrete-time dynam-

ics corresponding to simulation algorithms for use

on a computer.

As an example, the phyllotaxis model of Jönsson

and others (2006) can be thought of as a set of

reaction rules at the molecular level, augmented

with a set of cell division and attachment rules at

the cellular level, resulting in an emergent

dynamics of floral primordia at the tissue level. At

Figure 2. (A) Shoot meristem with

plasma membrane and nucleus mark-

ers, with 2D Voronoi diagram super-

imposed; (B) 3D Voronoi diagram

constructed from similar imagery.

Courtesy Bruce Shapiro and Marcus

Heisler, JPL/Caltech

Recent Plant Models: A Viewpoint 275



each scale, objects are born, move through space

exchanging information, and are transformed into

other objects or die.

CONCLUSIONS

There is a systematic approach to building useful

models of complex biological systems that arise in

developmental plant biology. It involves (1) build-

ing a representation of the biological regulatory and

mechanical networks and processes known or

hypothesized for a growing tissue, (2) translating

these networks into mathematical models in the

form of dynamical systems, (3) using relevant data

(the more the better) to constrain the models and

derive their most robust predictions, and (4) iterat-

ing the process. A key step is the translation of

biological networks and processes to dynamical

system models. Such dynamical frameworks as the

ANN-GRN and GRSN models of regulatory net-

works, the weak spring and finite element models of

mechanical networks, the dynamical grammars for

integration of models of diverse processes including

those that change the structure of the system, and

perhaps future smart/active manifold models, can

provide the necessary targets of the biology to

mathematics translation in one or more ways.

With these various mathematical and computa-

tional tools for advanced modeling of developmen-

tal systems, and with new technologies for

obtaining data with which to constrain such models,

the future of scientifically effective modeling within

botany and developmental biology looks very

bright.
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à la théorie des formes quadratiques. J Reine Angewandte

Math 133:97–178.

Recent Plant Models: A Viewpoint 277


